Robsut Wrod Reocginiton via Semi-Character Recurrent Neural Network
نویسندگان
چکیده
The Cmabrigde Uinervtisy (Cambridge University) effect from the psycholinguistics literature has demonstrated a robust word processing mechanism in humans, where jumbled words (e.g. Cmabrigde / Cambridge) are recognized with little cost. Inspired by the findings from the Cmabrigde Uinervtisy effect, we propose a word recognition model based on a semi-character level recursive neural network (scRNN). In our experiments, we demonstrate that scRNN has significantly more robust performance in word spelling correction (i.e. word recognition) compared to existing spelling checkers. Furthermore, we demonstrate that the model is cognitively plausible by replicating a psycholinguistics experiment about human reading difficulty using our model.
منابع مشابه
Solving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks
Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints. In this paper, to solve this problem, we combine a discretization method and a neural network method. By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem. Then, we use...
متن کاملHow Robust Are Character-Based Word Embeddings in Tagging and MT Against Wrod Scramlbing or Randdm Nouse?
This paper investigates the robustness of NLP against perturbed word forms. While neural approaches can achieve (almost) human-like accuracy for certain tasks and conditions, they often are sensitive to small changes in the input such as non-canonical input (e.g., typos). Yet both stability and robustness are desired properties in applications involving user-generated content, and the more as h...
متن کاملUnlabeled Data for Morphological Generation With Character-Based Sequence-to-Sequence Models
We present a semi-supervised way of training a character-based encoderdecoder recurrent neural network for morphological reinflection, the task of generating one inflected word form from another. This is achieved by using unlabeled tokens or random string as training data for an autoencoding task, adapting a network for morphological reinflection, and performing multi-task training. We thus use...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملA Recurrent Neural Network Model for solving CCR Model in Data Envelopment Analysis
In this paper, we present a recurrent neural network model for solving CCR Model in Data Envelopment Analysis (DEA). The proposed neural network model is derived from an unconstrained minimization problem. In the theoretical aspect, it is shown that the proposed neural network is stable in the sense of Lyapunov and globally convergent to the optimal solution of CCR model. The proposed model has...
متن کامل